Source: Wikipedia A “New” Losing-Trick Count (NLTC) was introduced in The Bridge World, May 2003, by Johannes Koelman. Designed to be more precise than LTC, the NLTC method of hand evaluation utilizes the concept of “half-losers”, and it distinguishes between ‘missing-Ace losers’, ‘missing-King losers’ and ‘missing-Queen losers.’ NLTC intrinsically assigns greater value to Aces than it assigns to Kings, and it assigns greater value to Kings than it assigns to Queens. Some users of LTC make adjustments to the loser count to compensate for the imbalance of Aces and Queens held. Koelman argues that adjusting a hand’s value for the imbalance between Aces and Queens held isn’t the same as correcting for the imbalance between Aces and Queens missing. Because of singletons and doubletons [and because losing-trick counts assign losers for the first three rounds of a suit], the number of losers from missing Aces tends to be greater than the number of losers from missing Queens.[5] NLTC differs from LTC in two significant ways. First, NLTC uses a different method to count losers (explanation and loser-count lists below). Consequently, with NLTC, the number of losers in a singleton or doubleton suit can exceed the number of cards in the suit. Second, with NLTC the number of combined losers between two hands is subtracted from 25, not from 24 (explanation below), to predict the number of tricks the two hands will produce when declarer plays the hand in the agreed trump suit. As with LTC, the NLTC formula assumes normal suit breaks, it assumes that required finesses work about half the time, and it must only be applied after an 8-card trump fit or better is discovered. When counting NLTC losers in a hand, consider only the three highest ranking cards in each suit:
• Count 1.5 losers for a missing Ace in a suit of at least 1 card in length
• Count 1.0 losers for a missing King in a suit of at least 2 cards in length
• Count 0.5 losers for a missing Queen in a suit of at least 3 cards in length
• Count 0 losers for a void suit
The following hands highlight the differences between the LTC and NLTC methods:  Axxx  Axx  Axx  Axx – 8 LTC losers, but only 6 NLTC losers  Kxxx  Kxx  Kxx  Kxx – 8 LTC losers, and also 8 NLTC losers  Qxxx  Qxx  Qxx  Qxx – only 8 LTC losers, but 10 NLTC losers Here is the basic NLTC list. For simplicity, cards below the rank of Queen are represented by “x”:
Suit Length
3 Cards (or More) Doubletons Singletons Void
Holding NLTC Holding NLTC Holding NLTC NLTC
AKQ(x) AKx(x) AQx(x) Axx(x) 0 0.5 1.0 1.5 AK AQ Ax 0 1.0 1.0 A 0 0
KQx(x) Kxx(x) 1.5 2.0 KQ Kx 1.5 1.5 K 1.5 0
Qxx(x) 2.5 Qx 2.5 Q 1.5 0
xxx(x) 3.0 xx 2.5 x 1.5 0
• 7.5 losers: minimum values (simple raise)
• 5.5 losers: game-forcing values
• 4.5 losers: consider investigating slam
• 3.5 losers: investigate slam
Next consider responder’s hand. Opposite partner’s 1H or 1S opening, with 3-card support, responder knows an 8+ fit exists and can bid according to the following table:
• 9.5 losers: minimum values (simple raise)
• 8.5 losers: game-invitational values
• 7.5 losers: game-forcing values
• 6.5 losers: consider investigating slam
• 5.5 losers: investigate slam
N.B. since this response system focuses on major-fits, it can be seen that to reach a minor-suit game at the 5-level, the hand must have one less loser for each of the above-listed actions. The NLTC solves the problem that the LTC method underestimates the trick taking potential by one on hands with a balance between ‘ace-losers’ and ‘queen-losers’. For instance, the LTC can never predict a grand slam when both hands are 4333 distribution:
 KQJ2 KQ2 KQ2 KQ2 W             E A543 A43 A43 A43
will yield 13 tricks when played in spades on around 95% of occasions (failing only on a 5:0 trump break or on a ruff of the lead from a 7-card suit). However this combination is valued as only 12 tricks using the basic method (24 minus 4 and 8 losers = 12 tricks); whereas using the NLTC it is valued at 13 tricks (25 minus 12/2 and 12/2 losers = 13 tricks). Note, if the west hand happens to hold a small spade instead of the jack, both the LTC as well as the NLTC count would remain unchanged, whilst the chance of making 13 tricks falls to 67%. The NLTC also helps to prevent overstatement on hands which are missing aces. For example:
 AQ432 KQ KQ52 32 W             E K8765 32 43 KQ54
will yield 10 tricks. The NLTC predicts this accurately (13/2 + 17/2 = 15 losers, subtracted from 25 = 10 tricks); whereas the basic LTC predicts 12 tricks (5 + 7 = 12 losers, subtracted from 24 = 12).

## Second round bids

Whichever method is being used, the bidding need not stop after the opening bid and the response. Assuming opener bids 1 and partner responds 2; opener will know from this bid that partner has 9 losers (using basic LTC), if opener has 5 losers rather than the systemically assumed 7, then the calculation changes to (5 + 9 = 14 deducted from 24 = 10) and game becomes apparent!

## Limitations of the method

All LTC methods are only valid if trump fit (4-4, 5-3 or better) is evident and, even then, care is required to avoid counting double values in the same suit e.g. KQxx (1 loser in LTC) opposite a singleton x (also 1 loser in LTC). Regardless which hand evaluation is used (HCP, LTC, NLTC, etc.) without the partners exchanging information about specific suit strengths and suit lengths, a suboptimal evaluation of the trick taking potential of the combined hands will often result. Consider the examples:
 QJ53 743 KJ2 632 W             E AK874 A5 AQ54 54 QJ53 743 632 KJ2 W             E AK874 A5 AQ54 54
Both layouts are the same, except for the swapping of West’s minor suits. So in both cases East and West have exactly the same strength in terms of HCP, LTC, NLTC etc. Yet, the layout on the left may be expected to produce 10 tricks in spades, whilst on a bad day the layout to the right would even fail to produce 9 tricks. The difference between the two layouts is that on the left the high cards in the minor suits of both hands work in combination, whilst on the right hand side the minor suit honours fail to do so. Obviously on hands like these, it does not suffice to evaluate each hand individually. When inviting for game, both partners need to communicate in which suit they can provide assistance in the form of high cards, and adjust their hand evaluations accordingly. Conventional agreements like help suit trials and short suit trials are available for this purpose.